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Mathematically Assessing the Consequences
of Food Terrorism Scenarios
Y. LIU AND L.M. WEIN

ABSTRACT: We derive mathematical expressions for the mean number of casualties resulting from a deliberate
release of a biological or chemical agent into a food supply chain. Our analysis first computes the amount of con-
taminated food as a function of the network topology and vessel sizes in the food processing plant. A probabilistic
analysis, in which each potential consumer of contaminated food has his own random purchase time, infectious
dose, and incubation period, determines the number of people who consume enough tainted food to get infected
or poisoned before the attack is detected and food consumption is halted. These simple formulas can be used by
the U.S. government and the food industry to develop a rough-cut prioritization of the threats from food terrorism,
which would be a 1st step toward the allocation of appropriate prevention and mitigation resources.
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Introduction

It is not clear whether botulinum toxin in milk is the unique
catastrophic scenario in food terrorism (Wein and Liu 2005) or

whether it is merely the tip of the iceberg. Given the wide array
of biological or chemical agents that could be used in a food at-
tack and the immense variety of food types that could be targeted,
it is not practical to construct and analyze from scratch a detailed
mathematical model for each agent and food type. Nonetheless, as
noted in Recommendation nr 14 in a recent report by the Office
of Inspector General, Dept. of Homeland Security (2007), it is vi-
tally important to quickly assess all of the agent-food type scenar-
ios so that resources for prevention and mitigation can be allocated
rationally. Toward this end, we analyze a generic model of an at-
tack on the food supply and derive formulas for the mean number
of casualties in terms of the key characteristics of the biological or
chemical agent and the food supply chain. Given the intended use
of our model to aid in a rough-cut ranking of various agent–food
type combinations, we sacrifice some realism and accuracy to pre-
serve some parsimony and ease of use.

The Model

We begin with a brief overview. The model tracks contami-
nated food as it moves through the various stages of storage

and processing within the food processing facility. The model
(1) allows food to move continually through the facility or to be
processed in discrete batches; (2) permits the volume of food to
expand or contact at each stage; (3) allows for forking (that is,
disassembly) and assembly operations within the facility; and
(4) assumes that a fraction of the contaminating agent survives
storage, processing, transportation, and final food preparation.
In the downstream portion of the supply chain, each unit of
contaminated food (for example, a gallon of milk) is purchased by
a small group (for example, a family) of potential consumers after a
random distribution delay, and then this unit of food is consumed
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by each consumer in the small group at a constant rate over a
finite amount of time. We use a dose–response curve to determine
if and when each consumer becomes infected or poisoned. Each
infected or poisoned consumer displays symptoms after a random
incubation period, the attack is detected after a specified number
of consumers become symptomatic, and all food consumption is
halted after a further specified delay.

We now turn to the detailed model formulation. The raw data for
the model are the values for the parameters described in Table 1.
The food processing facility is modeled as a set of N stages of stor-
age or production. Each stage uses either a continuous flow pro-
cess or a batch process (Schmenner 1993), the distinction being
that food continually moves through the system as it is being pro-
cessed in the former system, and is processed in large batches in
discrete steps in the latter system. The only difference in the anal-
ysis stems from whether stage 1 is batch flow or continuous. In the
model, a deliberate biological or chemical release of size Q occurs
at stage 1, and if a downstream stage in a facility is the obvious re-
lease location, then the upstream portion of the facility can be ig-
nored and this release location can be viewed as stage 1. Through-
out the supply chain, the agent is assumed to be uniformly mixed
into the food. While this assumption is realistic for many liquids
(for example, milk silos, which would be stage 1 in a typical milk
attack [Wein and Liu 2005], have agitators that continually mix the
milk), it may not be realistic for solids (and may lead us to overesti-
mate the magnitude of an attack involving solid foods). Each stage
i = 1, . . . , N is partially characterized by 3 variables: the number of
containers (these can be for storage or processing) (ni); the volume
transformation factor from stage i to stage i + 1 (θ i), where θ i < 1
represents, for example, concentration or evaporation, and θ i > 1
represents, for example, expansion or addition of material; and the
type of operational flow from stage i to stage i + 1 (oi), where oi =
d for dedicated, oi = f for forked, oi = a for assembly, and oi = m
for full mixing (Figure 1). For simplicity, we do not consider par-
tial mixing, and we assume that max { ni

ni+1
,

ni+1

ni
} is an integer for i =

1, . . . , N − 1. In the main text, we assume that the agent of con-
cern is essentially inert, that is, does not undergo microbial growth,
during processing, distribution, and consumption; however, at the
end of the Appendix, we briefly outline how to generalize our anal-
ysis to allow for growth of microbrial agents throughout the supply
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chain via, for example, the Gompertz or Baranyi-Roberts (Baranyi
and Roberts 1994) growth model.

In addition to these 3 variables, we let λ1 be the total arrival rate
of food to stage 1, and λN , which equals (

∏N
j=1 θ j )λ1, be the rate

Table 1 --- Model parameters.

N Number of stages of storage and processing
Q Amount of biological or chemical agent released
ni Number of containers at stage i for i = 1, . . . , N
θ i Volume transformation factor from stage i to stage i + 1 for

i = 1, . . . , N
oi Type of operational flow from stage i to stage i + 1 for

i = 1, . . . , N − 1
λ1 Arrival rate of food to stage 1
w 1 Time between successive cleanings at stage 1
si Size of each container at stage i for i = 1, . . . , N
α Fraction of agent that survives storage, processing, and

transportation
n Consumers per unit of food
δ Minimum speed of distribution channel
eμd Median speed of distribution channel
e σd Dispersal factor of speed of distribution channel
ID50 Median infectious dose
β Probit slope of the dose–response function
eμs Median incubation period
e σs Dispersal factor of incubation period
c Food consumption rate
k Number of symptomatics until detection
� Time from detection to halting of consumption

Figure 1 --- The 4 types of operational flow from stage i
to stage i + 1, illustrated for the special case in which
max{n i , n i+1} = 2. (A) In dedicated flow, ni = n i+1 and each
of the n i containers feeds a corresponding container in
stage i + 1. (B) In forked flow, ni+1

ni
is an integer greater

than 1, and the contents of each of the ni containers at
stage i are split evenly among ni+1

ni
containers at stage i +

1. (C) In assembly flow, ni
ni+1

is an integer greater than 1,
and the contents of each set of ni

ni+1
containers at stage i

are assembled into a single container at stage i + 1. (D)
In full mixing, all contents from all ni containers at stage
i are split evenly among all n i+1 containers at stage i + 1.

at which food exits stage N . We let si denote the size of each of
the ni containers in stage i, and impose a balanced capacity as-
sumption, ni θ i si = ni+1s i+1, which allows us to perform all calcu-
lations without using s 2, . . . , sN . If stage 1 is a continuous flow pro-
cess then we define w1 to be the time between successive cleanings
of stage 1 equipment (for example, silos). In this case, the amount
of contaminated food depends on when during the cleaning cy-
cle the attack occurs (Wein and Liu 2005). For mathematical sim-
plicity, in this case we compute the mean number of casualties re-
sulting from the mean amount of contaminated food, rather than
taking the expectation over the amount of contaminated food; the
loss of accuracy due to this assumption is investigated later. Also,
if stage 1 is a continuous flow process, the contaminated food will
have different concentration levels of agent because the concentra-
tion level at stage 1 drops exponentially just after the instantaneous
point release due to the simultaneous arrival of uncontaminated
food and the outflow of contaminated food (Wein and Liu 2005). To
simplify our analysis, we assume that all of the contaminated food
has the same concentration level of agent by the time it exits stage
N . Although this is an approximation for a continuous flow system,
the concentration levels do become much more homogeneous if
food is assembled into large containers downstream (Wein and Liu
2005), as is typical in many food processes.

A fraction α of the biological or chemical agent survives during
storage, processing, transport, and final food preparation. There are
n potential consumers per unit (for example, gallon or pounds) of
contaminated food; that is, if the attack goes undetected then each
person consumes 1/n of a unit of contaminated food. Each poten-
tial food consumer in our model has an associated independent
and identically distributed (i.i.d.) random variable that represents
the time of purchase (that is, the amount of time from when the 1st
contaminated food leaves the production facility to the time when
the potential consumer purchases his contaminated food). We de-
compose this random variable into 2 pieces, with the 1st piece be-
ing the time interval from when the 1st contaminated food leaves
the facility until the time when the contaminated food consumed
by a random consumer leaves the facility. This time interval is a uni-
form random variable with a mean and standard deviation that are
calculated from primitive model parameters by assuming that con-
taminated food leaves the facility at a constant rate, which is the
output rate λN times the fraction of food at stage N that is contami-
nated. The 2nd piece, which we refer to as the speed of the distribu-
tion channel, is the interval from when the contaminated food of a
random consumer leaves the facility until it is purchased. Because
the distribution time has a minimum positive value and is typically
skewed to the right, we assume that the speed of the distribution
channel is the sum of a constant δ and a lognormal random vari-
able with median eμd and dispersal factor e σd (Table 1).

Upon purchase, we assume that each person consumes contam-
inated food at the continuous rate c (hence, we are ignoring the
food preparation time, which is typically much less than the time
it takes for the food to travel through the distribution channel), so
that his allotment of 1/n food units is consumed in 1/c time units.
Note that although the shelf life of a product is highly tied to the
speed of the production and distribution system, the amount of
time the product is offered for sale, and the period over which the
product is consumed, we do not explicitly incorporate the prod-
uct shelf life into the model. Rather, certain quantities, such as
the consumption rate and the mean and standard deviation of the
distribution system, are primitive model parameters, with the un-
derstanding that these quantities are partly driven by the product
shelf life.
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We employ a probit dose–response function, so that a person
who consumes y food units is infected (we use “infected” although
some agents cause poisoning) with probability 	[β log10( y

ID50
)],

where ID50 is the dose that infects half of the population and β is the
probit slope (Wein and Liu 2005); as is typical in the infectious dis-
ease literature (for example, Wells 1955), we assume that the dose
is a continuous variable. Equivalently, each potential consumer has
an i.i.d. uniform [0, 1] random variable u and gets infected if he con-
sumes no less than his infectious dose, which is Y = ID50 10	−1(u)/β .
A person becomes infected at the moment he has consumed his
infectious dose Y . He then incurs a log normally distributed incu-
bation period with median eμs and dispersal factor e σs , which is the
time delay between the onset of infection and the onset of symp-
toms. We assume that the attack is detected when the kth person de-
velops symptoms (hence, the incubation period actually includes
the time it takes for a symptomatic person to report to a medical fa-
cility so that he can be diagnosed). All food consumption is halted
after a further delay �.

Detection and consumption halting are exceedingly complex
and we have taken a rather simple cut at them, which we believe
is consistent with the goals of our model (both in terms of accuracy
and ease of use). The actual detection time will depend on a variety
of issues that are not explicitly modeled, including the amount of
information on the food’s container (for example, cartons of milk
contain information about which shift of which processing plant it
originated from), the spatial distribution of the food, and the qual-
ity of the medical surveillance network (for example, whether spa-
tially distributed symptomatic patient data are shared). Similarly,
the parameter � depends on a variety of unmodeled variables, such
as the accuracy and speed of communication from epidemiologists
to decision makers, the decisiveness of the decision makers, and
the efficacy of the communication approaches used to inform the
public about the attack.

Results

In the Appendix, we derive an approximate (the approximation
is restricted to our estimate of the time at which consumption

is halted in Eq. 8) but reasonably accurate estimate for the mean
number of casualties (that is, number of people poisoned or in-
fected), denoted by E[I], and assess its accuracy against simulation
results from the exact model. We present the results as a 2-step pro-
cedure, where we first compute the mean amount of contaminated
food, denoted by H , by a simple iterative algorithm. For stage i =
1, . . . , N, let mi be the number of the ni containers that have con-
taminated food, and let hi be the amount of contaminated food.
Starting with the initial conditions

m1 = 1 and h1 =

⎧⎪⎨
⎪⎩

s1 if stage 1 is batch

λ1w1

2n1
if stage 1 is continuous flow

(1)

we iteratively solve

mi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi if oi = d

ni+1mi

ni
if oi = f

⌈
ni+1mi

ni

⌉
if oi = a;

ni+1 if oi = m

(2)

hi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi hi if oi = d

θi hi if oi = f

mi+1ni

mi ni+1
hiθi if oi = a

n1h1

⎛
⎝ i∏

j=1

θ j

⎞
⎠ if oi = m

(3)

for i = 1, . . . , N − 1, where � x � is the smallest integer greater than
or equal to x, and set

H = hN (4)

In terms of H in Eq. 4, the mean number of casualties is

E [I ] = nH	

(
β log10

(
αQ
nH

ID50

))
if nH	

(
β log10

(
αQ
nH

ID50

))
< k (5)

where 	 (·) is the cumulative distribution function of the standard
normal distribution. In this case, the attack is too small to be de-
tected. If nH	(β log10( αQ/nH

ID50
)) ≥ k, then the mean number of casu-

alties is

E (I ) = nH
∫ ∞

0

∫ nN H
mNλN

0
	

(
β log10

(
C j

ID50

))

× mNλN

nN H
1

x2σ
√

2π
e
− (lnx2−μd)2

2σ 2
d dx1dx2 (6)

where

C j = αQc max(0, min(c−1, τ − (x1 + δ + x2)))
nH

(7)

and

τ = exp
(

μw + 	−1
(

k
nH

)
σw

)
+ � (8)

is the time at which consumption is halted, where μw and σ w are
solved from

eμw+ σ 2
w
2 = nN H

2mNλN
+ δ + eμd+ σ 2

d
2 + nHμi

αQc
+ eμs +

σ 2
s

2 (9)

(
e σ 2

w − 1
)

e2μw+σ 2
w = n2

N H2

12m2
Nλ2

N

+
(

e σ 2
d − 1

)
e2μd+σ 2

d

+
(

nHσi

αQc

)2

+
(

e σ 2
s − 1

)
e2μs +σ 2

s (10)

Equation 5 also provides a simple estimate for the mean num-
ber of casualties in an attack of any size under the pessimistic as-
sumption that the attack goes undetected. Although this estimate
requires less data and is simpler to compute than Eq. 6, it is also
cruder and fails to account for how the consumption rate and the
probability distributions of the purchase time and incubation pe-
riod interact to determine the efficacy of halting consumption.

To assess the accuracy of Eq. 6, we compare its estimates to the
exact simulated values (the Monte Carlo simulation generates ran-
dom purchase times, infectious doses and incubation periods for
all nH potential consumers to determine the number of casualties,
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and then repeats this procedure many times until the 95% confi-
dence interval half-width for the number of casualties is < 1% of the
mean number of casualties) for various release sizes, using param-
eter values from a botulinum toxin in milk scenario in Wein and Liu
(2005) study; readers are referred to Wein and Liu (2005) for a dis-
cussion and derivation of these parameter values. In particular, by
Eq. 1, we set H = h1 = λ1w1

2n1
= (640000 gallons/day)(72 h)

2(8) = 120000 gallons
because there are 8 silos, and set λN = λ1, mN = 1, and nN = 8 (that
is, perfect yield and dedicated processing lines). We use the values
α = 0.316 (this value of α was derived in Wein and Liu [2005] from
the inactivation rate of botulinum toxin in canned corn, which has
a similar pH to milk and is based on an outdated heat pasteuriza-
tion process; the heat pasteurization process in the U.S. dairy in-
dustry has been intensified in recent years [Alberts 2005], and the
true value of α, which is proprietary, may be much different than
0.316), n = 4/gallon, δ = 48 h, eμd = 9.55 h, e σd = 2.40, ID50 = 1 μg,
β = 4.34, eμs = 46.99 h, e σs = 1.23, c−1 = 84 h, k = 100, and � =
24 h, and then compute E[I] for various values of Q. The numeri-
cal results (Table 2) reveal that Eq. 6 is sufficiently accurate for the
purpose of rough-cut prioritization: within 1% of the exact value for

Table 2 --- Simulated compared with approximate mean
casualties resulting from the mean amount of contam-
inated food. For various release sizes (Q), we compare
the simulated mean number of casualties to the mean
casualties estimated by Eq. 6.

Release Mean Mean
size casualties simulated casualties Eq. 6

0.18 g 13.29 13.96
0.2 g 31.83 31.84
0.3 g 526.8 526.9
0.5 g 7852 7882
0.8 g 37473 39931
0.9 g 49473 53420

1 g 61728 67104
10 g 417430 367840

100 g 446500 413400
1 kg 446780 414530

10 kg 446770 414610
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Figure 2 --- For a release size of 1 g,
the simulated histogram (using
≈ 105 instances) of the number of
casualties, accounting for the
randomness in the amount of
contaminated food.

small (≤ 0.5 g) attacks, and within ≈ 10% for larger (> 1 g) attacks.
We stress that the goal of the comparison is not to assess the mag-
nitude of a botulinum in milk attack (which is not possible without
an accurate value of α), but rather to assess the accuracy of Eq. 6.

The simulated values in Table 2 are the mean number f casual-
ties resulting from the mean amount of contaminated food. How-
ever, the amount of contaminated food is itself a uniform ran-
dom variable between 0 and λ1w1

n1
. Taking into account the random

amount of contaminated food and the fact that the number of ca-
sualties for a given amount of contaminated food is actually a bi-
nomial random variable, we use Monte Carlo simulation to create
a histogram (of ≈ 105 instances) for the number of casualties when
the release size is 1 g (Figure 2). The variation in the number of casu-
alties is dictated nearly entirely by the random amount of contam-
inated food, and so the upper bound on the number of casualties
is roughly twice the mean value. The u-shape of the histogram in
Figure 2 can be explained by the plot of casualties compared with
amount of contaminated food in Figure 3: the right peak in Figure 2
is due to the peak in Figure 3, and the left peak in Figure 2 is due
to the skewed right tail in Figure 3. In addition, the expected value
of the number of casualties in Figure 2 is 57391, compared with the
value of 61728 in Table 2, which is the mean number of casualties
resulting from the mean amount contaminated food. Hence, our
qualitative results are not changed by considering only the mean
amount of contaminated food in Eq. 6.

Discussion

Aprobabilistic risk assessment typically includes a threat analy-
sis (what is the likelihood of an attack), a vulnerability analysis

(what is the likelihood the attack will be successful), and a conse-
quence analysis (what is the damage from a successful attack). Be-
cause the U.S. government is likely to have very little reliable de-
tailed data about terrorists’ intentions and capabilities that would
inform a threat analysis, and because a determined and resourceful
terrorist group would be capable of defeating any security mech-
anisms that might be put in place at a food processing facility, a
probabilistic risk analysis of a food terrorist attack is almost entirely
dictated by a consequence analysis, such as that performed here.
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Figure 3 --- For a release size of 1 g,
the simulated number of casualties
compared with the amount of
contaminated food.

Section 112(r) of the Clean Air Act forced every chemical facil-
ity with large quantities of hazardous chemicals to perform an off-
site consequence analysis, which estimates the number of people
endangered by a chemical accident. These analyses, the majority
of which were based on methodology proposed by the Chemical
Emergency Preparedness and Prevention Office, U.S. EPA, are pro-
viding the basis for post-9/11 security upgrade requirements and
alternative technology assessments. Because of national security
concerns, the results of these analyses are not in the public domain
(Dept. of Justice 2000). In a similar way, new laws may be needed
to require food production facilities to perform consequence anal-
yses. In our view, because of the enormous number of agent–food
combinations, and because only a small fraction of these combi-
nations is likely to result in a large number of casualties, it is ap-
propriate to use a rather crude and easy-to-use method (that is, an
idealized model with parsimonious data requirements) to initially
prioritize all combinations, and then to follow up with a more de-
tailed analysis of the minority of combinations that are potentially
dangerous. In this context, Eq. 1 to 10 can be viewed as a 1st draft
(for example, the analysis could be elaborated with a mortality rate
or some other measure that quantifies the severity of the casual-
ties associated with a particular biological or chemical agent) of the
methodology required for the initial prioritization.

However, a more detailed analysis of high-priority combinations
might generalize our model in several directions, including an in-
vestigation of the extent of non uniform mixing (particularly for
solid foods), a more elaborate detection model that incorporates
the spatiotemporal clustering of cases, the amount of information
sharing, the quality of the surveillance system, and the unique-
ness of symptoms (although the data requirements for such a study
would be more onerous than for our model), more realistic time
lag distributions, and more detailed outcome measures, such as the
distribution of the number of casualties.

The values for the parameter α, which is the fraction of agent
that survives storage, production, and transportation, are not typ-
ically available outside of the food industry (at least for biological
and chemical agents that do not naturally arise in food safety—as

opposed to food security scenarios), and indeed may even require
experiments to estimate them. The ComBase Initiative, which is
an international collaboration that created the ComBase Database
(Baranyi and Tamplin 2004) and the microbial models in the Com-
Base Predictor (Combase 2008), has publicly available software that
computes the time-dependent concentration of microbial agents
in food using a growth (for example, Gompertz or Baranyi-Roberts)
or survival function with parameters that are polynomial functions
of quantities such as temperature, pH, and NaCl concentration; this
could be very helpful in computing α for various agent–food combi-
nations. As with the results of the chemical consequence analyses,
it is likely that the U.S. government would not want the detailed
results of a food consequence analysis to be made public. Conse-
quently, we do not derive numerical estimates for various agent–
foodtype scenarios in this article, but we urge the U.S. government
to do so, either by enacting new laws or via its new SPPA Initiative
(2007). Our software is available for free to U.S. government and
food industry employees upon request.

Finally, while our focus is on food security, our results also apply
to an accidental contamination of food, particularly if the model is
extended to growth of microbial agents as outlined in the Appendix.
For example, these results could help the U.S. FDA choose the types
of foods and accidental hazards that should be subject to the Haz-
ard Analysis and Critical Control Point (HACCP) approach to man-
aging food safety (FDA 2007).
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Appendix

This appendix contains the derivation of Eq. 1 to 10 in the main
text and briefly discusses the challenges involved in general-

izing this approach to microbial agents that undergo growth. All
primitive model parameters are described in Table 1 of the main
text.

The mean amount of contaminated food. We begin by comput-
ing the total amount of contaminated food, H . Let hi be the amount
of contaminated food in stage i = 1 . . . , N, and let mi denote the
number of the ni containers that are contaminated. By definition,
we have H = hN , and this quantity is computed by a simple itera-
tive process. We assume that the deliberate release of agent occurs
in one container in stage 1, so that m1 = 1. If stage 1 is a batch pro-
cess then h1 = s 1. If stage 1 is continuous flow, then the amount of
contaminated food at stage 1 depends on when during the clean-
ing cycle the release occurs (Wein and Liu 2005). By Little’s formula
(Gross and Harris 1985), h1 in a continuous flow system is the ar-
rival rate of food at a single container at stage 1, which is λ1

n1
, times

the length of time between the release time and the next cleaning
time. For simplicity, we assume a random release time and ignore
the filling and draining intervals at the beginning and end of the
cleaning cycle, so that this length of time is uniformly distributed
between 0 and w1. Hence, the expected amount of contaminated
food at stage 1 is

h1 =

⎧⎪⎨
⎪⎩

s1 if stage 1 is batch

λ1w1

2n1
if stage 1 is continuous flow

(A1)

Regardless of whether stages 2, . . . , N are batch or continuous
flow, we can write down simple relations between stages i and i + 1
in terms of oi, which is the type of operational flow between stage
i and i + 1 (Figure 1). If stage i is dedicated (oi = d) then the only
change is via the volume transformation factor, and mi+1 = mi and
hi+1 = θ i hi. If stage i is forked (oi = f ) then no previously uncon-
taminated food becomes contaminated even though the number of
contaminated containers increases, and we have mi+1 = ni+1mi

ni
and

hi+1 = θ i hi. The least straightforward case is assembly (oi = a) be-
cause if there were upstream forks then the amount of previously
uncontaminated food that becomes contaminated depends on the
extent to which the upstream forks correspond to the downstream

reassemblies. For example, if at stage 1 a contaminated container
forks into streams a and b and an uncontaminated container forks
into c and d, and these 4 streams are reassembled into 2 containers
at stage 3, then there is no new contaminated food if a and b are
assembled together and c and d are assembled together, whereas
there is new contaminated food if a is assembled with either c or d.
Because upstream forks are typically associated with downstream
assemblies in most processing facilities (that is, a and b would be
reassembled in our example), we conservatively assume that the
reassemblies are performed to minimize the amount of new con-
taminated food. Under this assumption, we have mi+1 = � ni+1mi

ni
�,

where � x � is the smallest integer that is greater than or equal to
x, and hi+1 = mi+1ni

mi ni+1
hiθi . Finally, if stage i is full mixing (oi = m) then

mi+1 = ni+1 and hi+1 = n1h1(
∏i

j=1 θ j ). Solving these equations iter-
atively from i = 1 to i = N − 1 with initial conditions m1 = 1 and Eq.
A1 yields H = hN . Note that because we are only multiplying hi by a
constant at each step of the iteration, we need not keep track of the
fact that h1 is uniformly distributed and can simply use Eq. A1.

The mean number of casualties. Turning to the derivation of Eq.
5 to 7 in the main text, we let time 0 corresponds to the time when
contaminated food first leaves the food processing facility; as de-
scribed in the next paragraph, not all of the contaminated food exits
the facility at the same time. We assume that each of the nH poten-
tial food consumers has an associated independent and identically
distributed version of each of 4 independent random variables.

The 1st random variable is X (1), which is the time interval from
when the 1st contaminated food leaves the facility until the time
when the contaminated food consumed by a random consumer
leaves the facility. We assume that contaminated food leaves the
facility at rate mNλN

nN
, which is the total output rate of food times

the fraction of food at stage N that is contaminated. Because the
amount of contaminated food is H , if this food exited the facility at
a constant rate, then the time that a random potential consumer’s
contaminated food would leave the facility would be uniformly dis-
tributed between 0 and nN H

mNλN
.

The 2nd random variable is X (2), which is referred to as the speed
of the distribution channel. It is the interval from when the contam-
inated food of a random consumer leaves the facility until it is pur-
chased. We assume X (2) is the sum of a constant δ and a lognormal
random variable with median eμd and dispersal factor e σd .

The 3rd random variable is a uniform [0, 1] random variable u,
which leads to the infectious dose Y = ID50 10	−1(u)/β , where ID50 is
the median infectious dose, β is the probit slope, and 	 (·) is the
standard normal cdf. Finally, the random variable Z is the incuba-
tion period, which is lognormally distributed with median eμs and
dispersal factor e σs (that is, lnZ is a normal random variable with
mean μs and standard deviation σ s).

Because αQ amount of active agent is potentially consumed by
nH people, in the absence of detection a random potential con-
sumer (indexed by j = 1, . . . , nH) begins consuming food at the
time of purchase, denoted by Xj (which equals X (1)

j + X (2)
j ), and con-

sumes active agent at rate αQc
nH for c−1 time units. Hence, at time Xj

+ c−1 this person would have consumed his entire allotment of ac-
tive agent, αQ

nH . This person would become infected (or poisoned,
depending on the type of agent) at time X j + nHYj

αQc if Yj ≤ αQ
nH ; oth-

erwise, he does not become infected. Therefore, in the absence of
detection, the number of casualties I is a binomial random variable
with parameters nH and 	(β log10( αQ/nH

ID50
)), and the mean number

of casualties is nH	(β log10( αQ/nH
ID50

)). We assume that if this quan-
tity is less than k, which is the number of symptomatics needed to
identify the attack, then the attack goes undetected and this is the
mean number of casualties.
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To compute the mean number of casualties if nH	(βlog10

( αQ/nH
ID50

)) ≥ k, we define the random variable

Vj =

⎧⎪⎨
⎪⎩

nHYj

αQc
if Yj ≤ αQ

nH

∞ if Yj > αQ
nH

(A2)

which represents the amount of consumption time until consumer
j = 1, · · · , nH gets infected. We also let Wj = Xj + Vj + Zj be the (pos-
sibly infinite) time at which potential consumer j develops symp-
toms, and let m be a binomial random variable with parameters nH
and 	(β log10( αQ/nH

ID50
)), so that m is the number of consumers who

will be infected if there is no detection. If we let W(1) ≤ · · · ≤ W(m)

be the corresponding order statistics, then the time that consump-
tion is halted, which occurs � time units after the k th symptomatic
patient, is T = W(k) + �.

Because the exact calculation of T is burdensome, we derive a
tractable but accurate approximation via 2 steps. In the 1st step, we
make the simplifying assumption that W is a lognormal random
variable with median eμw and dispersal factor e σw . Because W is the
sum of 4 independent variables, we obtain μw and σ w by equating
the mean and variance of this lognormal random variable with the
mean and variance of X (1) + X (2) + V + Z.

The random variable X (1) has mean nN H
2mNλN

and variance n2
N H2

12m2
Nλ2

N
.

For X (2), the mean and variance for the nondeterministic part

X (2) − δ, which is lognormal, are eμd+ σ 2
d

2 and (e σ 2
d − 1)e2μd+σ 2

d . Simi-

larly, Z has mean eμs +
σ 2

s
2 and variance (e σ 2

s − 1)e2μs +σ 2
s .

For V , recalling that Y = ID50 10	−1(u)/β , we define the con-
ditional mean μi = E (Y | Y ≤ αQ

nH ) and conditional variance σ 2
i =

Var(Y | Y ≤ αQ
nH ). This approach, which ignores the fact that some

people do not get infected, should be accurate except perhaps in
the narrow range where the mean number of casualties is only
slightly larger than k. Then the mean and variance for V are nHμi

αQc

and ( nHσi
αQc )2.

Therefore, we obtain μw and σ w by solving the equations

eμw+ σ 2
w
2 = nN H

2mNλN
+ δ + eμd+ σ 2

d
2 + nHμi

αQc
+ eμs +

σ 2
s

2

(
e σ 2

w − 1
)

e2μw+σ 2
w = n2

N H2

12m2
Nλ2

N

+
(

e σ 2
d − 1

)
e2μd+σ 2

d

+
(

nHσi

αQc

)2

+
(

e σ 2
s − 1

)
e2μs +σ 2

s

In the 2nd step, we use Theorem 5.8 of Balkema and De Haan
(1978), which is a limit theorem for logW (k) as min{k, m− k} → ∞.
Applying this theorem in our setting, we find that logW (k) converges
to a normal random variable with mean

μ = μw + 	−1
(

k
nH

)
σw (A3)

and standard deviation

σ = 2π

nH
σ 2

w
k

nH

(
1 − k

nH

)
exp

((
	−1

(
k

nH

))2
)

(A4)

To prevent the need for multiple integration in our final formula
for the case in which the attack is detected, we hereafter assume
that consumption is halted at the deterministic time τ = eμ + �.

Our numerical computations suggest that the omission of A4 is in-
consequential because σ � μ.

With τ in hand, we derive the amount of active agent consumed
by consumer j as follows. Suppose for consumer j, x1 is the time for
the food to leave the facility, and x2 is the nondeterministic part in
the distribution channel. Then consumer j starts consumption at
time x1 + δ + x2, consumes the amount

C j =
αQc max

(
0, min

(
c−1, τ −

(
x1 + δ + x2

)))
nH

(A5)

and gets infected with probability 	(β log10( C j

ID50
)). Using the prob-

ability density functions for the uniform x1 and lognormal x2, we
get

E (I ) = nH
∫ ∞

0

∫ nN H
mNλN

0
	

(
β log10

(
C j

ID50

))

× mNλN

nN H
1

x2σ
√

2π
e
− (lnx2−μd)2

2σ 2
d dx1dx2

(A6)

where 	 (·) is the cdf of the standard normal distribution.
In summary, the mean number of casualties is

E [I ] = nH	

(
β log10

(
αQ
nH

ID50

))
if nH	

(
β log10

(
αQ
nH

ID50

))
< k

(A7)

and is expressed by Eq. A6 otherwise, where τ = eμ + � and μ is
given by A3.

Microbial growth. Finally, we briefly outline how to generalize
our model to a microbial agent that undergoes growth via a stan-
dard function such as the Gompertz function (for example, Table 1
in Buchanan [1991]) or the Baranyi–Roberts function (Baranyi and
Roberts 1994). For simplicity, we assume an amount Q of agent is
introduced (deliberately or accidentally) into 1 container in stage 1.
If we assume that the amount of time that food spends at each of
the N stages is a constant, then the concentration of the agent at
each point in time (starting from its initial concentration in stage 1
of Q

s1
) can be computed by assuming it follows the specified growth

function during each processing stage in addition to instantaneous
dilutions (that is, multiplying the concentration by hi−1

hi
) when the

food is transferred from stage i − 1 to stage i. The remainder of the
upstream analysis remains the same, and we denote the concen-
tration and volume of contaminated food at the end of stage N by
K and H , respectively.

Moving to the downstream portion of the supply chain, if we
let time 0 be the time when contaminated food first leaves the
food processing facility and let K (t) be the concentration of con-
taminated food at time t, then K (t) continues to undergo growth
(for example, Gompertz or Baranyi–Roberts) with the initial con-
dition K (0) = K . As before, each of the nH potential consumers
has 4 i.i.d. random variables: the time in the facility X (1), the dis-
tribution speed X (2), the infection threshold Yj, and the incubation
period Zj. Also, as before, poisoned consumers exhibit symptoms
at time W̃ j = X (1)

j + X (2)
j + Ṽ j +Z j , where Ṽ j is the time needed

to consume the required amount of food to cause infection if
food is consumed at rate c forever. The key challenge is to com-
pute the mean and variance of W̃ j , after which the analysis is
identical to the steps taken to derive Eq. A3 to A7. However, the
derivation of the mean and variance of W̃ j is more difficult than
before because Ṽ j depends not only on Yj, but also on Xj =
X (1)

j + X (2)
j .
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The value of Ṽ j is derived by numerically solving

∫ X j +Ṽ J

X j

K (t)c dt = Yj (A8)

Then the generalization of Eq. A2 is

Vj =

⎧⎪⎪⎨
⎪⎪⎩

Ṽ j if Ṽ j ≤ 1
nc

∞ if Ṽ j >
1

nc

(A9)

If we drop the subscript j and denote the solution to Eq. A8 by
Ṽ (x, y), then the mean and variance of X + Ṽ are, respectively,

∫ ∫
(x + Ṽ (x, y)) f (x) p(y) dx dy (A10)

∫ ∫
(x + Ṽ (x, y))2 f (x) p(y) dx dy

−
(∫ ∫

(x + Ṽ (x, y)) f (x) p(y) dx dy
)2

(A11)

Computing Eq. A10 and A11 numerically and adding the mean

eμs +
σ 2

s
2 and variance (e σ 2

s − 1)e2μs +σ 2
s μs of Zj to Eq. A10 and A11, re-

spectively, yields the mean and variance of W̃ j .

Vol. 73, Nr. 7, 2008—JOURNAL OF FOOD SCIENCE M353


